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USE OF EBSD DATA IN NUMERICAL ANALYSES 

Richard Becker' and Hasso Weiland' 

I Lawrence Livermore National Laboratory 
Livermore, CA 94550 . 
Alcoa Technical Center 
Alcoa Center, PA 15069 

INTRODUCTION 

Experimentation, theory and modeling have all played vital roles in defining what 
is known about microstructural evolution and the effects of microstructure on material 
properties. Recently, technology has become an enabling factor, allowing significant 
advances to be made on several fronts. Experimental evidence of crystallographic slip and 
the basic theory of crystal plasticity were established in the early 20th ~entury''~, and the 
theory and models evolved incrementally over the next 60 yearblo. (Asaro" provides a 
comprehensive review of the mechanisms and basic plasticity models.) During this time 
modeling was primarily concerned with the average response of polycrystalline aggregates. 
While some detailed finite element modeling (FEW with crystal plasticity constitutive 
relations was done in the early 1 9 8 0 ' ~ ' ~  13, such simulations over taxed the capabilities of the 
available computer hardware. Advances in computer capability led to a flurry of activity in . 

finite element modeling in the next 10 years1c21, increasing understanding of microstructure 
evolution and pushing the limits of theories and material characterization. 

Automated Electron Back Scatter Diffraction (EBSD) has produced a similar revolution 
in material characterization. The data collected is extensive and many questions about the 
evolution of microstructure and its role in determining mechanid properties can now be 
addressed. It is also now possible to obtain sufficient information about lattice orientations 
on a fine enough scale to allow detailed quantitative comparisons of experiments and newly 
emerging large scale numerical simulations. The insight gained from the coupling of EBSD 
and FEM studies will provide impetus for further development of microstructure mpdels and 
theories of microstructure evolution. 

Early studies connecting EBSD data to finite element models used manual measurements 
to define initial orientations for the sir nu la ti on^^^‘^^. In one study, manual measurements 
of the deformed structure were also obtained for comparison with the model predictionss. 
More recent work has taken advantage of automated data collection on deformed specimens 
as a means of collecting detailed and spatially correlated data for model ~alidation~~.~'. 



Although it will not be discussed in detail here, another area in which EBSD data 
is having a great impact is on recrystallization modeling. EBSD techniques can be used 
to collect data for quantitative microstructural analysis2*. This data can be used to infer 
growth kinetics of specific orientations, and this information can be synthesized into more 
accurate grain growth or recrystallization models29. Another role which EBSD techniques 
may play is in determining initial structures for recrystallization models. A realistic starting 
structure is vital for evaluating the models, and attempts at predicting realistic structures 
with finite element simulations are not yet successful30. As methodologies and equipment 
resolution continue to improve, it is possible that measured structures will serve as input 
for recrystallization models. Simulations have already been run using information obtained 
manually from a TEM3'. 

CRYSTAL PLASTICITY MODEL 

The impetus behind the growing use of EBSD for characterization and analysis of 
microstructures is the prominent role that microstructure has in determining many material 
properties. This implies a corresponding need to include microstructure in material models. To 
construct models which can capture microstructural effects and which are truly representative 
of the material at grain level, it is important to incorporate the basic physical mechanisms. 
For deformation models, this means accounting for changes of shape and lattice orientation 
based on crystallographic slip. 

The ideas of slip and lattice rotation were introduced in Taylor's seminal worK', and they 
were given a more complete theoretical treatment in several later papers7.". The concepts 
are generally accepted and serve as the basis for polycrystal texture evolution models 
such as the Taylor model, the Sachs model and self-consistent models. Crystal plasticity 
constitutive relations have been incorporated into finite element codes for examining details 
of deformation in single crystals'""* 17320*2' and polycrystals15* 15*22-25. Although there are 
currently many implementations of slipbased models, the basic kinematic description for 
most existing models is the same. 

The integration methods used with early finite element implementations of crystal 
plasticity relations weredeveloped for stepwise integration of the stress and state  variable^'^-'^. 
Some more recent implemen'Jtions'8*'9.32H follow a total Lagrange formulation where the 
stress is evaluated directly from a strain energy function and arbitrarily large rigid body 
rotations can be accommodated within an increment. The kinematics are the same; it is the 
integration strategy which differs. 

Crystal Kinematics 

The basis for the kinematic description is a multiplicative decomposition of the 
deformation gradient, F, into an elastic part, F', and a plastic part, Fp. 

F = F* 1 FP . (1) 

This is shown schematically in Figure 1. The plastic part captures the deformation by 
crystallographic slip. It does not distort the lattice or change its orientation. The elastic part 
accounts for rotation and distortion of the crystal lattice. 

The plastic deformation within a volume element is specified in terms of the average 
slip rate, +", on a slip system. The slip rate is related to the plastic part of the deformation 
gradient by 

N 



Figure 1. Illustration of defonnation by slip and distortion of the crystal lattice. 

where the slip plane normal is given by m; and the slip direction is so". The superscript 
cy is an index representing one of N slip systems. Equation (2) is a representation of the 
deformation rate in the intermediate configuration of Figure 1 where the lattice is undistorted 
and in its initial orientation. 

An expression giving the slip rate in the current configuration can be found by 
constructing the velocity gradient, L, from Eq. (1) 

The first and second terms on the right hand side are the elastic and plastic parts of the 
velocity gradient, L* and Lp, respectively. Using Eq (2), the plastic part of the velocity 
gradient can be written as 

N 

(4) 

(5) 

LP= jasa@3ma 
a=l 

where 
sa F* . and ma = mg. ~ * - l  

are the slip direction and slip plane normal in the current configuration. sa and ma are 
assumed to be orthogonal for slip processes, so the plastic part of the deformation is isochoric. 

Equations can be written for the evolution of sa and ma in terms of F* by taking time 
derivative of Eq. (5). However, in practice they are typically evaluated directly from Q. (5) 
for a given F*. F* is either integrated from 

(6)  F* = (L - Lp) . F' , 

or it is calculated through Eq. (1) where F is known from the configuration and FP is 
integrated from Eq. (2) 

Integration through Eq. (6) is used with updated Lagrangian methods while EZq. (7) combined 
with Eq. (1) is often used in full Lagrangian formulations. 



Stress Strain Relations 

It is assumed that the stress is related to the elastic distortion of thecrystal lattice through 
a strain energy function 4. In particular, the second Piola-Kirchhoff stress tensor, T*, and its 
rate can be given by 

84 
d E* 

T* = - and 

The Lagrangian strain of the lattice, E*, is 

1 
2 E* = - (C* - I )  ; (9) 

where C* is the right Cauchy-Green stretch tensor of the lattice. C in Eq. (8b) is the forth 
order crystal modulus tensor, usually set in a reference frame coincident with principle lattice 
directions. 

The second Piola-Kirchhoff stress is related to the Kirchhoff stress, r, and the Cauchy 
stress, U as 

where J = det(F), is the ratio of the deformed volume to the reference volume. Since the 
plastic deformation is isochoric, J = det(F*), the elastic volume change. It is typically very 
close to one for industrial forming operations, so the distinction between Cauchy stress and 
the Kirchhoff stress is usually ignored. 

An expression for the stress rate can be obtained by taking the derivative of Eq. (IO) 
and combining terms". After some manipulation, the Jaumann rate of the Kirchhoff stress 
can be written as 

Ju=T=F* -T* .F*T (10) 

N 
V 

T = f - W . T + T - W = K : : D - ~  +"R" (11) 
"=l 

where D is the rate of deformation tensor (symmetric part of the velocity gradient, L); w is 
the spin tensor (asymmetric part of the velocity gradient, L); K: is a fourth order modulus 
obtained by rotating the crystal modulus C into the laboratory reference frame and adding a '  
few terms on the order of stress; R" is given by 

(12) R" = K: : Pa + W" * T - T *  W" 

and 

1 1 
2 2 

W" = - [s" 8 ma - ma 8 sa] (13) 

Equation (1 1) is used in updated Lagrangian integration schemes where the stress is 
integrated in time. Equation (Sa) is often used to compute the stress directly from E* in full 
Lagrangian formulations. Although the relations for the full Lagrangian approach appear 
much simpler, the derivatives needed for a Newton iteration scheme resemble Eqs (1 1) 
and (12). Actual coding for the full Lagrangian formulation can be somewhat more involved 
because of convergence checking and correction updates. The advantage of the full Lagrange 
formulation is stability and accuracy for large rigid body rotation increments. 

Pa = - [ sa  @ma + m a g s " ]  and 

Slip System Constitutive Relations 

For crystals obeying the Schmid criterion, slip is assumed to be related only to the 
resolvedshear stress on the slip systems. In a rate independent model, the slip rate is generally 



taken to be proportional to the rate of change of the resolved shear stress. In a rate dependent . 

model, the slip rate is assumed to be related to the resolved shear stress itself, not its rate. 
The resolved shear stress on a slip system, T", can be determined from 

7a moQ. T' . C* . so" (14) 

in the intermediate configuration of Figure 1, and 

ra = me. 7. sa (15) 

for a formulation based in the current configuration. 
Because slip on multiple combinations of slip systems can accommodate many defor- 

mation modes, rate independent constitutive models can lead to ambiguities in the solution. 
The degree of slip on each system may be indeterminate. Although use of some slip system 
hardening relations35 or the single valued decomposition method% can be used to obtain 
a solution, the most common method currently employed to circumvent this slip system 
indeterminacy is to use a rate dependent slip system model. Here the slip rate is given 
uniquely in terms of the resolved shear stress on the slip system, P, and its resistance to 
slip, sa. 

A simple power law strain rate sensitivity takes the form: 

5" = a sign(P) (ifi>lirn 
where a is a reference slip rate and n is the strain rate sensitivity exponent. 

The resistance of a slip system can written as an evolution equation 

N 

where Hap is an evolving matrix capturing hardening interactions among slip systems. 
The model allows considerable flexibility for specifying the strength evolution, but most. 
current simulations adopt a rather simple specification where H,p evolves proportionally 
with deformation: 

Here, g' is a function of the accumulated slip and h,p is a constant matrix. If the hardening of '. 
a slip system due to its own activity is assumed to be equal to the hardening of the system due 
to activity on other slip systems, hap is fully populated with ones. This is the most common 
assumption, and it was the assumption used in generating the results presented here. More 
comprehensive slip system hardening models have been proposed which more accurately 
repmsent detailed observations of secondary slip initiation"*38, but these have not yet found 
widespread use in modeling activities. 

Hap = 9' hap (18) 

CRSYTAL MODEL VALIDATION 

As the automated collection of EBSD data is relatively new, methods of coupling the 
experimental data to finite element simulations are still under development. While there have 
been several excursions into  application^^**^, most EBSD-FEM studies to date have been 
conducted for purposes of model validation. Some earlier studies used manually collected 
measurements of orientations on a section before and after deformation to assess the validity 
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Fiure 2. Microhardness indents on the split channel die compression specimen: a) as seen on the specimen; 
b) initial indent pattern and c) pattern after deformation. 

of FEM solutions25. More recent efforts are using automatically collected data and three 
dimensional deformation modelsz6, *’. 
Split Channel Die Polycrystal Sample 

An early validation study using EBSD data was conducted by Panchanadeeswaran, et 
alB.39. They took an as cast, commercial purity aluminum sample with a 200 pm grain size 
and machined it for a channel die compression experiment. The sample was split in half with 
the dividing plane normal being in the constraint direction of the specimen. Both new surfaces 
were polished. One of the mating surfaces had a region marked with microhardness indents 
over a 2 x 2 mm square area. The grain morphology and orientations in the region were then 
recorded, Figure 2a,b. The sample was reassembled and deformed to 40% reduction in the 
channel die at 375°C. 

The locations of the hardness indents were recorded from the deformed sample and 
used to calculate the average strain experienced by the region. There was substantial shear 
in addition to the compression, as evident in Figure 2c. This shear is consistent with . 
the inadvertent macroscopic shear of the specimen during the compression test. Manual 
orientation measurements were made on several grains in the marked area of the deformed 
sample. 

The measured locations of the initial grain boundaries from a region containing 35 grains 
were used to construct a two dimensional finite element mesh of 2187 quadrilateral elements 
in which the mesh lines conformed to the grain boundaries. The mesh was continuous across 
the grain boundaries, simulating deformation with no grain boundary sliding. The initial 
lattice orientations for each grain were assigned based on the measurements. 

The slip system hardening and strain rate sensitivity used in the simulation were deduced 
by taking polycrystal data and using an average Taylor factor to scale the stress and strain 
rate to obtain approximate values of resolved shear stress and slip rate. All slip systems 
were assumed to harden equally. With this construction, a Taylor polycrystal model will 
approximately replicate the original experimental stress strain curve. The two dimensional 
model was deformed in plane strain compression with the final applied deformation being 
consistent with that measured from the microhardness indents, Figure 2c. 
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Figure 3. Comparison of experimental and predicted (1 11) pole figures from the split channel die compres- 
sion study. Examples of a) agreement and b) disagreement Experimental pole figures are on the left and the 
model results are on the right. 

Comparison of the experimental and calculated orientation distributions for individual 
grains shows some in which agreement is good, Figure 3a and others where the simulations 
failed to predict the observed orientation spread, Figure 3b. In general, agreement was only 
found when orientation changes were small. Since such grains do not provide a critical test 
for the model, one might be hesitant to conclude that the model predictions were proven 
successful for any of the grains examined. 

Observation of many pole figures from the simulation showed that orientation changes 
resulted primarily from rotations about an axis normal to the model plane. This was the case 
even though all twelve slip systems were modeled and the lattice was free to rotate about 
any arbitrary axis in three dimensional space. Rotation only about the model plane was also 
observed in an earlier studyu. This behavior is thought to be aresult of the kinematic freedom 
for material spin about that axis and only capturing shear stress and grain interactions in the 
model plane. Using the same initial configuration and 90 degree rotated initial orientations in 
a generalized plane strain model, where the compression is in the out of plane direction, the 
coincidence of the rotation axis with the model plane was again evident=. This verified that 
the predominant rotation about the model plane is indeed an artifact of the two-dimensional 
model. In addition to these difficulties, it was clear from the results that grain shapes and the 
influence of neighboring grains have a significant impact on orientation changes. Thus, it is 
important to include the grain structure in all directions. 

A conclusion from the study was that it is not possible to obtain a realistic approximation 
of a deformed three dimensional microstructure with a two dimensional model except for a 
very restricted class of orientations. Accurate predictions of local lattice orientations require 
a detailed three dimensional representation of the microstructure and a means of applying 
boundary conditions to the model without introducing significant artificial constraint. 



These conclusions suggest two paths for constructing model validation studies: char- 
acterize and test a three dimensional grain structure or construct idealized specimens for 
which the grain structure is known. With current technology, the former option involves 
serial sectioning where the specimen is destroyed. This prohibits one to one validation, 
but it is useful for deformation studies on a larger size scale. Such characterization has 
been performed on a tantalum specimen@. The second validation option is achievable by 
constructing columnar grain samples where the grain structure is constant in one direction. 
m i l e  the configuration is not representative of a typical polycrystal sample, it is useful for 
model validation. 

Deformation of a Quasi-Columnar Grain Sample Along the Growth Direction 

Two recent studies have used columnar grain samples in coordinated EBSD-FEM 
validation efforts. Both studies started with the same directionally solidified aluminum 
castings which produced quasi-columnar grains running in the solidification direction. Nearly 
all of the grains had a (01) crystal direction approximately aligned with the solidification 
direction. In the work by Bhattacharyya, et al”, a 3 mm thick slice of the casting was 
examined where the columnar axis was in the thickness direction of the slice. The sample 
was characterized by EBSD on both sides of the slice. Since the columnar grain growth was 
imperfect, there was a variation in grain shape from one side to the other. One side had 
coarser grains, indicating that some of the grains terminated within the specimen. The sample 
was compressed 40% of its initial height by uniaxial compression with the compression axis 
being the axis of the columnar grains. Since the initial orientations were near (001) and 
the stable orientation for uniaxial compression is (1 lo), considerable lattice rotation was 
expected. 

The deformed specimen was characterized by automated EBSD for comparison with 
the simulations. A prominent feature found’ on the orientation maps was the occurrence of 
distinct bands or regions of differing orientation within the grains. In some grains the bands 
were solitary, while in others, several narrow parallel bands of alternating orientation were 
Observed. 

A uniform finite element mesh of hexahedrzl elements was created to model the 
compression specimen. Mesh regions were identified with specific grains from the initial 
IOM map of the coarse grained side of the sample, and the appropriate orientations were 
assigned to the elements. Since the mesh was regular, the mesh lines did not conform 
to the grain boundaries, and the grain boundaries in the rr.odel had a stepped appearance. 
The specimen was modeled with one element through the thickness of the slice. Boundary 
confditions applied to the four planes orthogonal to the Compression plane required that these 
faces remain planar and orthogonal. 

An orientation map constructed from the deformed finite element model failed to show 
the orientation banding observed in the experiments, and comparison of the predicted pole 
figures with the experimental results also failed to show the correct distribution of lattice 
rotation in many grains. These two observations are consistent and suggest that the local 
deformation pattern may not have been predicted correctly either. Since deformation is a 
comlbination of rotation and strain, this lack of agreement in orientation also suggests that 
the (deformation pattern may be in error. Potential reasons for failure of the model will be 
discussed below. 

Transverse Deformation of a Quasi-Columnar Grain Sample 

In another studyz using the columnar grain material, segments of the casting were 
annealed prior to excising the specimens. This produced centimeter sized grains with 
considerably less variation along the growth axis. Channel die compression specimens with 



100 111  

Figure 4. Initial specimen geometry and orientation for columnar grain tricrystal. 

dimensions 10 mm thick by 15 mm high by 25 mm long were then machined for this study. 
The growth axis of the grains was aligned with the constraint direction (10 mm direction) 
of the channel die. The grain patterns were very similar on both sides of the specimen, 
indicating that the desired columnar grain structure was nearly achieved. The initial grain 
structure was photographed on all faces, and the grain orientations were measured at several 
points by EBSD. As with the study described above, the grains tended to have the (001) 
direction aligned within 5 to 10 degrees of the growth axis. The samples were deformed to 
15% compression in a channel die at room temperature and at 200°C. 

Here, attention will be focused on one sample which contained three grains. The 
specimen and its initial lattice orientations are shown in Figure 4. The deformed specimen is 
shown in Figure 5. As the sample was deformed in a channel die, little deformation occurred 
in the out of plane direction. However, deformation by slip has normal-shear coupling, and 

. the deformation on the plane normal to the constraint direction varied through the thickness 
of the sample. For example, the "foot" on the lower right of the deformed sample varied in 
size and shape through the thickness of the specimen. 

OIM scans of the deformed sample were taken from within the three boxes indicated 
on Figure 5. Two of these are within single crystal regions fairly far removed from a 
grain boundary and the third, the center box, includes all three grains near the triple point.' 
Orientation maps from these .hee regions and the corresponding (1 11) pole figures are 
shown in Figures 6-8. The contour maps in Figures 6 and 7 were created by selecting a 
location near the center of the region and applying the same shading to all points which had 
an orientation within 5" of the selected orientation. Regions with an orientation greater than . 
5 degrees from the reference were shaded another color. The same shading is applied to the 
corresponding points on the pole figures. The white lines on the contour plots represent the 
orientations of slip traces observed on the surface of the deformed specimen. 

Figure 5. Columnar grain trictysQ1 following 14% compression in a channel die. The white rectangles mark 
regions where OIM scans were taken. 
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Figure 6. OIM orientation map from the rectangular region in grain # I  of Figure 5. The white line indicates 
the slip trace direction. 
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Figure 7. O M  orientation map from the rectangular region in grain #3 of Figure 5. The white line indicates 
the slip trace direction. 

Figures 6 and 7 are, respectively, from the large single crystal regions on the left and 
right ends of the specimen. In both cases, the lattice rotation from one end of the plot to the- 
other is greater than 10 degrees. The contour boundaries are aligned with the slip traces in 
both &. This suggests that the orientation is roughly constant along the slip trace and that 
the orientation gradient is greatest in the direction normal to the slip plane. Had slip O C C U K ~ ~  
uniformly in the region, the lattice would have the same orientation throughout. Hence, the 
plots indicate a significant gradient in slip activity over the region. 

The O M  scan containing the triple point, Figure 8, is more complex, but the same 
correlation can be observed between the orientation gradients and the dominant slip trace: 
the orientation is fairly constant along the direction of the slip trace, and it varies normal 
to the trace. It is also observed that the slip traces lie along different directions than in the 
regions of the crystal remote from the triple junction. This is a result of the complex stress 
state found at the triple point. Grain 3 in Figure 8 also displays a banded orientation structure 
reminiscent of that observed by Bhattacharyya et a127. The lack of such a structure in other 
portions of the same grain, Figure 7, supports the hypothesis that such structures form for 
certain combinations of loading and crystal orientations and not others. 

The finite element mesh used to simulate the deformation is shown in Figure 9. It 
contains approximately 2oooO hexahedral elements. The lattice orientations were assigned 
based on the EBSD measurements. Boundary conditions were chosen to simulate deforma- 
tion in a channel die. The width of the channel was wider than the undeformed specimen to 
permit insertion of the specimen along with F'TFE tape for a lubricant. To capture the initial 
broadening of the specimen, the channel was modeled as rigid surfaces 10.35mm apart while 
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Figure 8. OIM orientation map covering the triple junction of the tricrystal. Regions labeled 1 and 2 are sub- 
divisions of grain #I; A, B and C are subdivisions of grain #2; and I and II are subdivisions of grain #3. The 
white line indicates the slip trace direction. 

the initial specimen width was 9.98mm. This allows a lateral spread of approximately 4%. 
Deformation was achieved by displacing the upper surface with respect to the lower at a 
constant velocity. 

The deformed specimen shape and predicted contours of accumulated slip are shown 
in Figure 10. The specimen outline shows that a "foot" was predicted on the lower left of 
the specimen, but the magnitude and shape differ from that observed in Figure 5. Another 
feature of the deformed shape worth noting is the slope of the boundary on the left side of 
the crystal. The simulation predicts that the boundary will be inclined with the top moving 
toward the right with respect to the bottom. The experiment shows the top moving toward 
the left with respect to the bottom. This is obviously a source of concern. In attempts to 
obtain better qualitative agreement, many perturbations were made to the initial orientation, 
the friction, slip system hardening relations, strain rate sensitivity and channel width. None 
of these measures caused the slope on the left side of the model to have the correct sign. 

The predicted pole figure from the model region corresponding to Figure 6 shows no 
discernible orientation spread and very little lattice rotation. This is consistent with Figure 10' 
which shows little difference in accumulated slip across the region. 

Figure 9. Rnite element mesh used to simulate the defonnation of the columnar grain hicrystal. 



Figure 10. Predicted contours of accumulated slip from the finite element model of the tricrystal. 

Direct Mapping of IOM Data to a Finite Element Simulation 

In the examples cited above, regions of the finite element model were defined as grains 
based on grain boundaries identified through micrographs or IOM data. All of the elements 
within each grain were assigned the same initial orientation. A more direct and automated 
assignment of orientations was explored by KaIIivayaIil, et aI4'. In that work, a region near 
the surface of an aluminum sample was characterized by an automated IOM scan. A 100 x 
250 regular finite element mesh was constructed to be the same size as the'scanned region. 
The initial lattice orientation of each element was determined by calculating the element 
centroid coordinates and locating the nearest corresponding point in the O M  map. This 
orientation was assigned to the element. As a result of this initialization procedure, any 
orientation variation present in the measurements was reflected in the finite element model. 
A contour plot of R1l, a component of the rotation matrix identifying the initial orientation of 
the crystal lattice, is shown in Figure 11. The plot looks remarkably like an O M  orientation 
map. 

The free surface of the specimen is at the bottom of the model shown in Figure 11. 
The nodes on the upper surface were constrained from motion in the vertical direction but 
were free to move horizontally. On the left side of the model, the nodes were constrained 
horizontally and free to move vertically. Deformation was applied by moving the nodes on 
the right side of the model. The region was deformed 4% in plane strain tension. 

Contours of accumulated slip from the simulation are shown in Figure 12. The notable 
feature of these results is the appearance of fine structure and slip patterning. These features 
appear realistic but have not been observed in other simulations. They could be the result 
of a combination of factors, but further exploration is needed to determine a definite origin. 
The most obvious factors distinguishing this model from others are: a) a very fine spatial 
discretization giving the solution significantly more degrees of freedom, b) a large number 
of grains and interacting neighbors to drive nonuniform deformation patterns, and c) the 
presence of a free surface on the bottom of the model. 

CRYSTAL MODEL VALIDATION 

The availability of data collected from automated EBSD enables a critical evaluation 
of the accuracy of meso scale finite element crystal plasticity models. The signifi- 
cant disagreement found between model and experiment in the examples presented above 



Figure 11. Contour plot from the FEM code showing the 11 component of the rotation matrix defining the 
initial lattice orientations. 

Figure 12. Contours of maximum principal logarithmic strain following 4% strain of the model with orienta- 
tions defined in Wgure l l. 

highlights the importance of conducting such validation studies. Validation studies define 
the expected quality of the predictions and identify aspects of the problem which must be 
defined accurately to obtain a reasonable solution. 

Based on the success of Taylor-like polycrystal models for predicting texture evolution, 
it was at first anticipated that a discretized model of a two dimensional section would give 
nearly correct orientation predictions since equilibrium and compatibility could both be 
satisfied. This proved not to be the case. It was then suggested that properly accounting for . 
the details of the grain structure and the bou6dary conditions would fix the problem. This 
was also not sufficient. Even when the full three dimensional grain structure was known 
and boundary condition approximations were avoided by modeling the full specimen, the 
model failed to predict gross features of the specimen deformation as well as the significant 
orientation gradients. There is obviously something else that is not being modeled properly. 

The potential causes of the disagreement have not been investigated thoroughly, so 
additional studies must be conducted to isolate the factors and propose guidelines for future 
modeling. Possible sources of modeling error can be put into two broad classes: deficiencies 
in the finite element model and deficiencies in the crystal model itself. 

Of several possible finite element model deficiencies, one is clearly inadequate spatial 
discretimiion. In the columnar grain studies of Bhattacharyya, et al", the element size was 
larger than 150pm and the element size was on the order of 700pm in the study by Weiland 
and Becke?6. In both cases, the experiments showed band formation with a spacing on the 
order of 100pm. To capture features of this size, the elements would need to be on the order 
of lOpm or less. It is clear that the models would never capture these features with the given 
discretization. 



Additionally, the alignment of the elements with the direction of the slip gradients may 
play a role. It has long been known that proper mesh construction is critical in capturing 
incipient shear bands4’. If the mesh is not aligned properly, the added mesh constraint can 
delay or prevent the appearance of a shear band. In the case of crystal modeling, the banded 
structure observed by Bhattacharyya, et aIz7 appeared in some grains and not in others, and 
the band features observed in Figure 8 were not present in another portion of the same grain, 
Figure 7. This indicates that these patterns can be excited or suppressed without significant 
modification to the stress field. Given that the local deformation field might not be difficult to 
perturb, it is possible that constraints imposed by the spatial discretization may be inhibiting 
gradients in the deformation field. Consider the orientation gradient shown in Figure 6. This 
gradient is oblique to the mesh, and it may not be possible for the elements to deform in a 
manner consistent with the observed orientation gradients. If this were the case, it would also 
explain the inability of the model to capture the correct sign for the slope on the left side of 
the specimen. 

Deficiencies in the slip system hardening relations used in crystal plasticity models are 
well known. A constant slip system interaction matrix was assumed. This does not properly 
account for interactions among slip systems3. Although using a more sophisticated slip 
system interaction model3* did not improve the predictions in the tricrystal simulations, that 
does not mean that the slip system model is unimportant. It is just not the dominant reason 
for the failure of the model in that simulation. It is also known that some crystals do not 
follow the Schmid law. Slip can depend on pressure as well as stress not acting directly on 
the slip system of interest43. This is generally not a big effect for aluminum, so it is doubtful 
that omission of non-Schmid contributions had a significant impact on these predictions. 
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